Chapter 8-4



IMPURITY CONDUCTIVITY

Certain impurities and imperfections drastically affect the electrical prop-
erties of a semiconductor. The addition of boron to silicon in the proportion of
1 boron atom to 10° silicon atoms increases the conductivity of pure silicon at
room temperature by a factor of 10°. In a compound semiconductor a stoichio-
metric deficiency of one constituent will act as an impurity; such semiconduc-
tors are known as deficit semiconductors. The deliberate addition of impuri-
ties to a semiconductor is called doping.

We consider the effect of impurities in silicon and germanium. These ele-
ments crystallize in the diamond structure. Each atom forms four covalent
bonds, one with each of its nearest neighbors, corresponding to the chemical
valence four. If an impurity atom of valence five, such as phosphorus, arsenic,
or antimony, is substituted in the lattice in place of a normal atom, there will
be one valence electron from the impurity atom left over after the four cova-
lent bonds are established with the nearest neighbors, that is, after the impu-
rity atom has been accommodated in the structure with as little disturbance as
possible. Impurity atoms that can give up an electron are called donors.

P.As, Sb




Donor States.| The structure in Fig. 19 has a positive charge on the impurity

atom (which has lost one electron). Lattice constant studies have verified that
the pentavalent impurities enter the lattice by|substitution|for normal atoms,
and not in interstitial positions. The crystal as a whole remains neutral because
the electron remains in the crystal.

The extra electron moves in the coulomb potential e/er |of the impurity

ion, where € in a covalent crystal is the static dielectric constant of the

medium. The factor 1/e takes account of the reduction in the coulomb force

between charges caused by the electronic polarization of the medium. This
treatment is valid for orbits large in comparison with the distance between
atoms, and for slow motions of the electron such that the orbital frequency is

low |in comparison with the frequency w, corresponding to the energy gap.

These conditions are satisfied quite well in Ge and Si by the donor electron of
P, As, or Sb.



Si has +4 valence electrons
As has +5 valence electrons

Eq
Donor bound level

Figure 19 Charges associated with an arsenic impurity atom in silicon. Arsenic has five valence
electrons, but silicon has only four valence electrons. Thus four electrons on the arsenic form tetra-

hedral covalent bonds similar to silicon, and the fifth electron is available for conduction. The
arsenic atom is called a donor because when ionized it donates an electron to the conducti




We estimate the ionization energy of the donor impurity. The Bohr theory
of the hydrogen atom may be modified to take into account the dielectric

constant of the medium and the effective mass of an electron in the periodic
potential of the crystal. The ionization energy of atomic hydrogen is —e*m/2%?
in CGS and —e*m/2(41e,h)? in SI.

In the semiconductor with dielectric constant € we replace ¢* by ¢%/e and
m by the effective mass m, to obtain

(CCS) Ey=7 5= (L@-T—‘i)ev ; (SI) Ed-- 2(422{{&)2 - 51)

as the donor ionization energy of the semiconductor.
The Bohr radius of the ground state of hydrogen is #*me® in CGS or
4re fi*/me® in SI. Thus the Bohr radius of the donor is

(CGS) a,; = m,e2 . (me/m) A (SI) ad = mee (52)




The application of impurity state theory to germanium and silicon is com-
plicated by the anisotropic effective mass of the conduction electrons. But the
dielectric constant has the more important effect on the donor energy because
it enters as the square, whereas the effective mass enters only as the first power.

To obtain a general impression of the impurity levels we use m, =~ 0.1 m

for electrons in germanium and m, = 0.2 m in silicon. The static dielectric
constant is given in Table 4. The ionization energy of the free hydrogen atom is
13.6 eV. For germanium the donor ionization energy E; on our model is 5 meV,
reduced with respect to hydrogen by the factor m,/me*> =4 X 107* The
corresponding result for silicon is 20 meV. Calculations using the correct

anisotropic mass tensor predict 9.05 meV for germanium and 29.8 meV for

silicon. Observed values of donor ionization energies in Si and Ge are given in
Table 5. In GaAs donors have E; = 6 meV.

Anisotropic
mass tensor  Table 5 (Exp)

Ge: m/me?=4x104% E,;=5meV 905 mev 12 mev
Si: m/me2=16x103 E;=20meV 298 mey 45 mev




Table 4 Static relative dielectric constant of semiconductors

Crystal € Crystal €
e S e e B L e e P e e e R e e S e L
Diamond 8.5 GaShb 15.69
Si 117 GaAs 13.13
Ge 15.8 AlAs 10.1
InSb 17.88 AlSb 10.3
InAs 14.55 SiC 10.2
InP 12.37 Cu,O 7.1

Table 5 Donor ionization energies E; of pentavalent + 5
impurities in germanium and silicon, in meV

P As Sb
R TR S R s S R S S S A N S ey
Si 45, 49. 39.
Ge 12.0 12.7 9.6




The radius of the first Bohr orbit is increased byl em/m,| over the value
0.53 A for the free hydrogen atom. The corresponding radius is (160)(0.53) =
80 A in germanium and (60)(0.53) = 30 A in silicon. These are large radii, so

that donor orbits overlap at relatively low donor concentrations, compared to
the number of host atoms. With appreciable orbit overlap, an “impurity band”
is formed from the donor states: see the discussion of the metal-insulator tran-
sition in Chapter 14.

The semiconductor can conduct in the impurity band by electrons hop-
ping from donor to donor. The process of impurity band conduction sets in at
lower donor concentration levels if there are also some acceptor atoms pre-
sent, so that some of the donors are always ionized. It is easier for a donor
electron to hop to an ionized (unoccupied) donor than to an occupied donor
atom, in order that two electrons will not have to occupy the same site during
charge transport.




Acceptor States.| A hole may be bound to a trivalent impurity in germanium

or silicon (Fig. 20), just as an electron is bound to a pentavalent impurity.
Trivalent impurities such as B, Al, Ga, and In are called acceptors because
they accept electrons from the valence band in order to complete the covalent
bonds with neighbor atoms, leaving holes in the band.

When an acceptor is ionized a hole is freed, which requires an input
of energy. On the usual energy band diagram, an electron rises when it gains
energy, whereas a hole sinks in gaining energy.

Experimental ionization energies of acceptors in germanium and silicon
are given in Table 6. The Bohr model applies qualitatively for holes just as for

electrons, but the degeneracy at the top of the valence band complicates the
effective mass problem.

Table 6 Acceptor ionization energies E, of trivalent +3
impurities in germanium and silicon, in meV

B Al Ga In

Si 45. o7, 65. 157.
Ge 10.4 10.2 10.8 11.2



< Acceptor bound level

Figure 20 Boron has only three valence electrons; it can complete its tetrahedral bonds only by
taking an electron from a Si-Si bond, leaving behind a hole in the silicon valence band. The positive
hole is then available for conduction. The boron atom is called an acceptor because when ionized
it accepts an electron from the valence band. At 0 K the hole is bound.




The tables show that donor and acceptor ionization energies in Si are com-
parable with kpT at room temperature (26 meV), so that the thermal ionization
of donors and acceptors is important in the electrical conductivity of silicon at
room temperature. If donor atoms are present in considerably greater num-
bers than acceptors, the thermal ionization of donors will release electrons
into the conduction band. The conductivity of the specimen then will be con-
trolled by electrons (negative charges), and the material is said to be n type.

If acceptors are dominant, holes will be released into the valence band
and the conductivity will be controlled by holes (positive charges): the mater-
ial is p type. The sign of the Hall voltage (6.53) is a rough test for n or p type.

Another handy laboratory test is the sign of the thermoelectric potential, dis-
cussed below.




The numbers of holes and electrons are equal in the intrinsic regime. The
intrinsic electron concentration n; at 300 K is 1.7 X 10" ¢cm™ in germanium
and 4.6 X 10° cm™° in silicon. The electrical resistivity of intrinsic material is
43 ohm-cm for germanium and 2.6 X 10° ohm-cm for silicon.

Germanium has 4.42 X 10** atoms per cm®. The purification of Ge has
been carried further than any other element. The concentration of the
common electrically active impurities—the shallow donor and acceptor
impurities—has been reduced below 1 impurity atom in 10! Ge atoms
(Fig. 21). For example, the concentration of P in Ge can be reduced below
4 X 10" cm™°. There are impurities (H, O, Si, C) whose concentrations in Ge
cannot usually be reduced below 10*—10"* cm ™, but these do not affect elec-
trical measurements and therefore may be hard to detect.
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Figure 21 Tg¢mperature dependence of the free carrier concentgation in ) e, after
R. N. Hall. The net concentration of electrically active impurities is@@ X 10'° cm™)as detexmined
by Hall cogificient measurements. The rapid onset of intrinsic excitati emperature

creased # evident at low values of 1/T. The carrier concentration is closely constant between 20 K
and 200 K.




Thermal Ionization of Donors and Acceptors

The calculation of the equilibrium concentration of conduction electrons
from ionized donors is identical with the standard calculation in statistical me-
chanics of the thermal ionization of hydrogen atoms (TP, p. 369). If there are
no acceptors present, the result in the low temperature limit k3T < E; is

The donors are at E, n = (ngNy)"2 exp(—E2ksT) , (53)

energy level just below Ec.

with ny = 2(m kpT/27h*)¥% here N, is the concentration of donors. To obtain
(53) we apply the laws of chemical equilibria to the concentration ratio

[e][N7 //[N,], and then set [Nj] = [e] = n. Identical results hold for acceptors,
under the assumption of no donor atoms.

If the donor and acceptor concentrations are comparable, affairs are com-
plicated and the equations are solved by numerical methods. However, the law

of mass action (43) requires the np product to be constant at a given tempera-
ture. An excess of donors will increase the electron concentration and de-
crease the hole concentration; the sum n + p will increase. The conductivity
will increase as n + p if the mobilities are equal, as in Fig. 22.

See Ashroft & Mermin, p. 581-584
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Figure 22 Electrical conductivity and hole concentration p calculated as a function of electron
concentration n for a semiconductor at a temperature such that np = 10*® cm™°. The conductivity
is symmetrical about n = 10'° cm ™. For n > 10'°, the specimen is n type; for n < 10, it is p type.

We have taken u, = u;, for the mobilities.



THERMOELECTRIC EFFECTS

Consider a semiconductor maintained at a constant temperature while an
electric field drives through it an electric current density j,. If the current is
carried only by electrons, the charge flux is

Jg=n(—e)(—w)E =nepE , (54)

where u, is the electron mobility. The average energy transported by an elec-
tron is referred to the Fermi level u,

(Ec == I‘L) + ngT >

where E, is the energy at the conduction band edge. We refer the energy to
the Fermi level because different conductors in contact have the same Fermi
level. The energy flux that accompanies the charge flux is

ju=nE,— p+3kgT)(—p,)E . (55)



The Peltier coefficient 11 is defined byjj; = I1j ] or the energy carried
per unit charge. For electrons,

eq. 55 divided by eq.54 II,=—(E,— u+3kgT)le (56)

and is negative because the energy flux is opposite to the charge flux. For

holes

Jo=pemE 5 ju=plp—E,+ kT)mE (57)

where E, is the energy at the valence band edge. Thus

IT, = (u — E, + kT )/e (58)

and is positive. Equations (56) and (58) are the result of our simple drift veloc-
ity theory; a treatment by the Boltzmann transport equation gives minor nu-
merical differences.?




The absolute thermoelectric power Q is defined from the open circuit
electric field created by a temperature gradient:

E=QgradT . (59)

The Peltier coefficient 11 is related to the thermoelectric power Q by

Il = QT . | (60)

This is the famous Kelvin relation of irreversible thermodynamics. A measure-
ment of the sign of the voltage across a semiconductor specimen, one end of
which is heated, is a rough and ready way to tell if the specimen is n type or p
type (Fig. 23).

IT=J,/J,=AU/e = (Q gradT ) « AX= QT




- 0.6
n- and p- Si m
"]
0.4 x
0.2 1
i) p-type
[ ! n-type
Nk
8: 09 T _ﬁr*h—-&
(mtrinS}f’l B
aaal i 2
0.4
Figure 23 Peltier coefficient of U
n and p silicon as a function of
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SEMIMETALS

In semimetals the conduction band edge is very slightly lower in energy
than the valence band edge. A small overlap in energy of the conduction and
valence bands leads to small concentration of holes in the valence band and of
electrons in the conduction band (Table 7). Three of the semimetals. arsenic
antimony, and bismuth, are in group V of the periodic table.

Their atoms associate in pairs in the crystal lattice, with two ions and ten
valence electrons per primitive cell. The even number of valence electrons

could allow these elements to be insulators. Like semiconductors, the semi-
metals may be doped with suitable impurities to vary the relative numbers of
holes and electrons. Their concentrations may also be varied with pressure, for
the band edge overlap varies with pressure.

Table 7 Electron and hole concentrations in semimetals

3 3

Semimetal n,, in cm”™

ny, in cm
1 B D B T P S S e A T e
Arsenic (2.12 + 0.01) X 10*° (2.12 = 0.01) X 10
Antimony (5.54 = 0.05) X 10° (549 * 0.03) x 10'?
Bismuth 2.8% % 10 3.00 X 107

Graphite 2.72 X 108 2.04 X 108



SUPERLATTICES

Consider a multilayer crystal of alternating thin layers of different composi-
tions. Coherent layers on a nanometer thickness scale may be deposited by
molecular-beam epitaxy or metal-organic vapor deposition, thus building up a
superperiodic structure on a large scale. Systems of alternate layers of GaAs and
GaAlAs have been studied to 50 periods or more, with lattice spacing A of per-
haps 5 nm (50 A). A superperiodic crystal potential arises from the superperiodic
structure and acts on the conduction electrons and holes to create new (small)
Brillouin zones and mini energy bands superposed on the band structures of the
constituent layers. Here we treat the motion of an electron in a superlattice in an

applied electric field.



Bloch Oscillator For electron motion in K space

Consider a collisionless electron in a periodic lattice in one dimension,
with motion normal to the planes of the superlattice. The equation of motion
in a constant electric field parallel to k is Adk/dt = —eE_or, for motion

across a Brillouin zone with reciprocal lattice vector G = 2m/A, we have
hG = fi2mw/A = eET, where T is the period of the motion. _The Bloch
frequency of the motion is wz = 27/T = eEA/f. The electron accelerates from
k = 0 toward the zone boundary; when it reaches k = 7/A it reappears (as by
an Umklapp process) at the zone boundary at the identical point —#/A, using
the argument of Chapter 2. Electron oscillates!

We consider the motion in a model system in real space. We suppose that
the electron lies in a simple energy band of width €

€ =€y(l—coskA). (61)




The velocity in k-space (momentum space) is

= i 'de/dk = (Aeyh) sin kA , (62)
and the position of the electron in real space, with the initial condition z = 0
at¢ = 0, is given by For electron motion in real space
z = Jodt = [dk v(k)(dt/dk) = (Aeyt) [dk(—H/eE) sin kA
=(—e€y/eE)(cos kA — 1) = (—e€y/eE)(cos(—eEAt/h) —1) . (63)

This confirms that the Bloch oscillation frequency in real space is wz = eEA/f.
The motion in the periodic lattice is quite different from the motion in free
space, for which the acceleration is constant.

Zener Tunneling

Thus far we have considered the effect of the electrostatic potential —eEz
(or —eEnA) on one energy band; the potential tilts the whole band. Higher
bands will also be tilted similarly, creating the possibility of crossing between
ladder levels of different bands. The interaction between different band levels at
the same energy apens the possibility for an electron in one band at n to cross to
another band at n’. This field-induced 1nterband tunnehng is an example of




SUMMARY

e The motion of a wave packet centered at wavevector k is described by
F = fidk/dt, where F is the applied force. The motion in real space is ob-
tained from the group velocity v, = ™ 'Vye(k).

* The smaller the energy gap, the smaller is the effective mass Im*| near the
gap.

* A crystal with one hole has one empty electron state in an otherwise filled
band. The properties of the hole are those of the N — 1 electrons in this
band.

(a) If the electron is missing from the state of wavevector k,, then the
wavevector of the hole is k;, = —k,.
(b) The rate of change of k;, in an applied field requires the assignment of a

positive charge to the hole: ¢, = ¢ = —e,.
(c) If v, is the velocity an electron would have in the state k,, then the veloc-
ity to be ascribed to the hole of wavevector k;, = — k, isv;, = v,.

(d) The energy of the hole referred to zero for a filled band is positive and is
en(k;)= —e(k,).

(e) The effective mass of a hole is opposite to the effective mass of an elec-
tron at the same point on the energy band: m;, = —m

e



